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Nonlinear wind-up in a strained planar vortex
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Abstract

The response of a Gaussian vortex to a strong external strain field is examined using two complementary numerical schemes.
When the strain is weak previous calculations have shown that a rebound phenomenon is operative: after enstrophy is transferred
from the mean to the azimuthal component by the straining there is a reversal during which a significant fraction of the enstrophy
moves back from the azimuthal component to the mean. Concomitantly the perturbation vorticity undergoes spiral wind-up and
develops a short-scale radial structure which becomes ever finer with time. We show that the rebound behaviour is suppressed by
strong strain and that the intricate radial structure is simultaneously inhibited. We also give some indication of the modifications
that are introduced when a strongly strained vortex is allowed to relax after the forcing field is switched off. 2002 Éditions
scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

Two-dimensional turbulent flows are typified by the behaviour that random small-scale initial conditions evolve to form
coherent vortices which constitute the dominant feature of the flow field [1–3]. Vortices in high Reynolds number flow are
frequently isolated in the sense that their separations are substantially greater than the length scales of the vortices themselves.
On the larger scale the vortices move under their mutual interactions and at leading order are governed by the dynamics of a
number of point vortices [4,5] while individual vortices can be regarded as approximately axisymmetric distributions of vorticity
immersed in a time-dependent irrotational field generated by the other vortices [6]. In practice vortices placed in such strain
fields are often observed to be quite robust both within turbulent and related geophysical flows, see for example Montgomery
and Kallenbach [7].

Bassom and Gilbert [8] investigated the linear behaviour of strained planar vortices and used a combination of asymptotic
and numerical methods to describe the way in which a large class of vortices can relax to axisymmetry. By this we mean that
if a smooth two-dimensional vortex is perturbed then differential rotation tends to lead to wind-up of vorticity fluctuations to
form a spiral. At infinite Reynolds number and within the linear approximation the vorticity distribution becomes axisymmetric
in the weak sense that when the vorticity field is integrated against a smooth test function the result decays algebraically with
time. However, it should be remarked that vortices do not inevitably relax to axisymmetry. Several works, including those by
Dritschel [9,10], Koumoutsakos [11] and Rossi et al. [12], have identified distributions that evolve to persistent, nonlinear,
non-axisymmetric configurations. Indeed Rossi et al. conducted numerical experiments to explore the relaxation of Gaussian
vortices subjected to perturbation and showed that for sufficiently strong disturbances the vortex evolves to a quasi-steady,
rotating tripole; otherwise it settles back as an axisymmetric monopole.

Recent work has clarified when linear perturbations to stable vortices tend to axisymmetrize. For example, results obtained
by Bernoff and Lingevitch [13] and Schecter et al. [14] confirm that Gaussian vortices do indeed axisymmetrize. While it is
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likely that this is also the case for general smooth, stable, non-compact vortices, we know of no formal proof of this (for partial
results see Llewellyn Smith [15], Smith and Rosenbluth [16] and Briggs et al. [17]). On the other hand, compact vortices
often permit undamped normal modes and so fail to axisymmetrize. If one superposes a ‘skirt’ of weak vorticity on a compact
distribution, this causes damping of the normal mode because of the presence of a critical layer and then axisymmetrization
occurs: the weaker the skirt the slower is the damping, as discussed by Schecter et al. [14], Briggs et al. [17], Le Dizès [18]
and Balmforth et al. [19]. Put another way, the weaker the skirt then the longer the vortex will appear to behave like a compact
vortex with some normal modes excited: however, ultimately, it will axisymmetrize. Nonlinear theory has been developed for
the case of a compact vortex with a weak skirt of vorticity [19], but little is known in general about how nonlinearity affects the
process of axisymmetrization for arbitrary distributions.

Computations described by Bassom and Gilbert [20] (hereafter referred to as BG99) were designed to investigate the nature
of spiral wind-up and axisymmetrization within the weakly nonlinear regime. They examined three forms of time-dependent
external field: an impulsive strain, an on-off step function and a continuous random input. Transfers of enstrophy between mean
and azimuthal components were observed and a ‘rebound’ phenomenon noted. After enstrophy was transferred from the mean
to azimuthal components by the external straining field, there was a subsequent reversal and much of the enstrophy moved back
to the mean. The size of this reversal did depend on the type of the external strain applied but it was often a significant fraction
of the original transfer from mean to azimuthal components. Long-time solutions developed by Lundgren [21] were used to
account for the nature of the rebound behaviour and, in order to place this in context, results were compared with analogous
passive scalar problems. This may be contrasted with Kida’s elliptical model [22,23] in which a vortex patch evolves inviscidly
under its own flow field together with the external strain. The vorticity distribution remains elliptical in shape with the lengths
and orientations of its principal axes governed by ordinary differential equations. The reversible ‘elastic’ behaviour of the Kida
vortex is rather special and such vortices cannot axisymmetrize. We may contrast the behaviour of a Gaussian vortex in a weakly
viscous flow, for which simulations show that azimuthal structure is generated and is then destroyed on the shear–diffuse time
scale, see [5]. This is an irreversible process that reduces the enstrophy and appears to be typical of smooth, stable, non-compact
vortices. While such a vortex can exhibit some features of the Kida model, the elastic behaviour is ultimately damped.

The objective of this paper is to extend the weakly nonlinear work of BG99 into the strongly nonlinear regime and thereby
both investigate the limitations of their theory and explore the robustness of the various phenomena observed. Note that as
the strain field is strengthened the process known as vortex stripping (Legras and Dritschel [24]) increasingly comes into play.
Stripping occurs when the vortex loses vorticity from its periphery and what remains is a sharp edge. This behaviour can easily
occur during close vortex encounters and the resulting sharp-edged vortices appear to be immune to the axisymmetrization
which is very commonly observed for smoother distributions [10,24].

In realistic flows the leading non-trivial effect on an individual vortex due to its neighbours is that of strain and here we shall
focus on the case of an external straining field with hyperbolic streamlines. This choice of distortion is motivated by the findings
of BG99 which indicate both that it leads to significant rebound and that the perturbation enstrophy develops a very marked
high wavenumber structure: the spatial frequency of this structure increases with time under a uniform straining field while the
vortex relaxes to a steady strained state. In consequence there is the interesting picture of relaxation on larger spatial lengths
while ever more intricate structure is being created on continuously shrinking scales through spiral wind-up in the relaxed state.

Our fully nonlinear investigation is inevitably numerical in character and our treatment is founded on two complementary
methods – one based on pseudo-spectral techniques while the other uses ideas taken from a contour dynamics approach. Details
of the two methods are postponed to Section 2.1 below after we have formulated the governing system of equations. The results
of the numerical experiments are described in Section 3 and we conclude by offering some discussion in Section 4.

2. Governing equations and numerical techniques

Our derivation of the governing system is motivated by that of BG99 and begins by considering a vortex with vorticityω

and stream functionψ within an externally imposed irrotational flowψext. The evolution of the flow satisfies the dimensionless
equations

∂tω= J (ψ +ψext,ω)+ Re−1 ∇2ω, (1)

∇2ψ = −ω, ∇2ψext = 0, (2)

where

∇2 ≡ ∂2
r + r−1∂r + r−2∂2

θ , J (a, b)≡ r−1(∂ra∂θ b− ∂θ a∂r b), (3)

written in terms of the usual polar co-ordinates(r, θ). The Reynolds number Re is assumed to be very large, for although our
principal theoretical interest lies in the inviscid limit Re→ ∞, numerical requirements mean that some diffusion has to be
retained in the model.
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The external stream functionψext is assumed to be generated away from our chosen vortex by distant vortices or moving
boundaries or some other device. Necessarilyψext is harmonic and so has algebraic growth away from the vortex, but nearby
it can be expanded as a sum of terms proportional torneinθ + c.c. for n� 0; wherever we use c.c. within a formula it denotes
the complex conjugate of the preceding expression. Then= 0 term has no effect; the next,n= 1, only generates uniform flow
which is not of interest here while then= 2 term represents a straining of the vortex. Therefore, like BG99, we shall restrict
our work to straining fields

ψext = εq(t)rneinθ + c.c., (4)

where 0< ε 	 1 and the time-dependent strength of the mode and orientation of the axes are prescribed by the complex
function q(t). Note that there is no vorticity in the external stream functionψext. Uniform vorticity, as in a shear flow, could
be introduced, but to limit our parameter space we shall not do so. In fact uniform vorticity may be eliminated by moving to a
rotating frame and changing the functionq(t).

All the subsequent calculations are conducted withn= 2 so that our forcing consists of a solitary azimuthal wavenumber –
but this is the one which has the greatest effect on the ensuing dynamics. The governing system is expanded,

ω= ω0(r, t)+ ε
(
ω1(r, t)e

inθ + c.c.
) + ε2(

ω2(r, t)+ ω22(r, t)e
2inθ + c.c.

) + · · · , (5)

with an analogous expression for the stream functionψ . (Note that here we have retained the azimuthal wavenumbern in order
to illustrate the overall structure of the equations even though it is implicit thatn = 2 for the numerical results shown.) The
termsω0 andψ0 represent the basic axisymmetric state of the vortex and, following BG99, we take the Gaussian form

ω0 = 1

4π
exp

(−r2/4)
, ψ0 = − 1

2π

[
ln r +

∞∫
r

s−1 exp
(−s2/4)

ds

]
, (6)

which has unit circulation and period of rotation 16π2 at the centre.
In passing we remark that several previous works in this area have expressed strain rates in dimensionless form rather than

the definition adopted here. Typically the strain is normalised by the peak vorticity of the vortex, and so, to facilitate comparison
with this other work, it is helpful to introduce the relative strain parameterεr given byεr = 16πε. The quantityεr is a useful
measure of the magnitude of the strain: for instance it is known [22] that a relative strain of|εr |> 0.15 (or |ε| � 0.003) is more
than sufficient to completely destroy a Kida vortex.

On substituting expansions akin to (5) forω andψ into the system (1)–(3) we find that

∂tω0 = Re−1�0ω0, (7a)

∂tω1 + inαω1 + inβ
(
ψ1 + qrn) = Re−1�1ω1, (7b)

∂tω2 + inr−1∂r
[(
ψ1 + qrn)ω∗

1
] + c.c.= Re−1�0ω2, (7c)

∂tω22 + 2in(αω22+ βψ22)− in2r−1[
ω1(∂rψ1)−ψ1(∂rω1)+ nqrn−1ω1

] = Re−1�2ω22 (7d)

and

−ω0 =�0ψ0, −ω1 =�1ψ1, −ω2 =�0ψ2, −ω22 =�2ψ22, (8)

where

�p ≡ ∂2
r + r−1∂r − n2p2r−2, α(r)≡ −r−1∂rψ0 and β(r)≡ r−1∂rω0.

In the inviscid limit, enstrophy

Eω ≡ 1

2

∫
ω2 d2r, (9)

is conserved and so, if initially the perturbation enstrophy is zero, then correct to O(ε2)

eω =
∞∫

0

(
ω0ω2 + |ω1|2)

2πr dr = 0. (10)

It is clear that within this expression we can identify two contributions: one comes from the mean terms in (5) while the other
arises from the azimuthal component. If we label the two partsemean

ω andeazi
ω so that

emean
ω ≡ 2π

∞∫
0

rω0ω2 dr, eazi
ω ≡ 2π

∞∫
0

r|ω1|2 dr, (11)
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then (10) demonstrates that in the limit Re→ ∞ any increase (decrease) ineazi
ω has to be balanced by an equal decrease

(increase) inemean
ω .

2.1. Numerical methods

As one of the aims here is to investigate the domain of applicability of the weakly nonlinear equations (7) we need to be
able to compare those results with some fully nonlinear simulations of (1)–(3). To tackle (7) we wrote this system as 24 coupled
equations inr and t and solved these using a Keller-box method [25] taken from theNAG suite of routines. The equations
were solved on a domain 0� r � rmax, where the outer boundaryrmax was placed sufficiently far out so as to ensure that the
necessary far-field decay had comfortably set in before it was reached. Standard regularity conditions were imposed atr = 0
and large-r asymptotes prescribed atr = rmax (see BG99 for details). For all the computations reported here the number of
spatial points was fixed as 1001 withrmax= 10 and Re= 108. Inclusion of some weak viscosity was necessary for numerical
purposes but the choice made was such that the time scale of the viscous decay of mean and azimuthal fields is at least a factor
of ten larger than the maximum times considered. We have ensured that viscosity has a negligible effect on the results described
below and so our weakly nonlinear predictions can safely be taken as being truly inviscid.

One question that we wish to address concerns the size of the straining field beyond which weakly nonlinear theory ceases
to provide an accurate description of the evolution of the flow. To this end, we developed a fully nonlinear pseudo-spectral
code designed to solve the vorticity/stream function system (1)–(2) in a doubly-periodic box. This domain was chosen to be of
size 16π × 16π and so is considerably larger than the half-width (r = 2) of the initial Gaussian distribution (6). The box was
sub-divided using 512 grid points in each direction so there were roughly 40–50 nodes spanning the central region occupied
by the vortex. In order to stabilise the calculation the viscous diffusion term in (1) was replaced by the hyperviscous operator
−ν8∇8ω. The parameterν8 was selected so that the effect of the term was to spatially filter at each time-step with the 1/e point
of the filter at five–sixths of the maximum spatial frequency as determined from the grid spacing (for details see Macaskill and
Bewick [26]). Finally, it should be noted that the doubly-periodic geometry introduces a weak background rotation equal to
the vortex circulation divided by twice the area of the domain. Strictly this effect should be accounted for when describing the
results but our region of integration was taken to be so large that in practice the corrections required could be safely ignored.

In order to validate our pseudo-spectral results an independent solution of the complete nonlinear problem was written using
the CASL (Contour-Advective Semi-Lagrangian) algorithm on the same doubly-periodic domain. In the CASL philosophy at
each time-step contours of vorticity are advected by the velocity field determined from a grid-based inversion of the Poisson
equation (2). The pseudo-spectral solution of this equation requires an interpolation of the contours of vorticity onto a regular
grid: thus the velocity field is only known to an accuracy determined by the rectangular grid used (here 512 square). However,
it has been shown [27] that the vorticity is determined considerably more accurately than for the equivalent pseudo-spectral
technique and that longer time-steps may be taken. For our purposes the most significant feature of the CASL approach is that it
has extremely small artificial dissipation, introduced by the technique known as contour surgery, which involves breaking long
thin filaments of vorticity and/or connecting thin but nearby filaments of equal vorticity value.

A key property to be emphasised in this work is that the dissipation within the CASL method is of completely different
character to hyperviscous diffusion so that when equivalent results are obtained with the two nonlinear codes it is a positive
indication that unwanted numerical dissipation is insignificant. To resolve the continuous variation of vorticity found across the
Gaussian vortex twelve vorticity contours were introduced with the vorticity jumps selected so that equal contributions to the
circulation were enclosed between each successive pair of contours.

3. Results

Almost all of the calculations described below were conducted using an external strain field of the form

ψext = 2ε
(
x2 − y2); (12)

in terms of (4) we haveq(t)= 1 implying thatψext is turned on at timet = 0 and is then constant indefinitely. The choice of
initialisation is often a subject of some debate and it has been argued that an abrupt imposition of a straining flow is of less
physical significance than a slower build-up which can be used to model vortices drifting far from a given vortex. The impulsive
case tends to induce large non-axisymmetric disturbances while the more gradual problem gives rise to a more benign response
as discussed in [24]. Very recent studies by Legras et al. [28] suggest that a vortex within a slowly growing strain field evolves
through a sequence of approximate equilibrium states until at some critical strain value it suddenly breaks. In this paper we
concentrate on the impulsive problem, although we shall make a brief comparison with a slower build-up of strain in Section 4.

At first glance it is unclear how the strain field should be imposed within our doubly periodic computational domain.
The strain field as defined above is not periodic, but rather undergoes a jump at the boundary. In principle this leads to an
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inconsistency, in that the vorticity may then also jump there. However, as the vorticity is very close to zero at the boundary
of the domain, any residual jump is of no consequence. It is possible to apply an exponential filter to the strain field near the
boundary in order to guarantee periodicity, but this refinement was not required here.

BG99 showed that when the Gaussian vortex (6) is distorted by a field like (12) there is a strong transfer of enstrophy to the
azimuthal component of perturbation enstrophyeazi

ω followed by an oscillatory relaxation ofeazi
ω back to a final non-zero level;

moreover, this effect was considerably more marked for the strained vortex than for the parallel problem in which a passive
scalar is advected within a straining flow. It is of interest to determine the robustness of this behaviour as the magnitude of the
strain is enhanced.

3.1. Steady strain: small ε

In Fig. 1 we present the time evolution of the perturbation enstrophy when the amplitude parameterε = 5 × 10−4

(εr � 0.025). The total first azimuthal componenteazi
ω with n= 2 was computed in two ways. First, the Keller-box method was

used to compute the O(ε2) part of eazi
ω (see (11)) using the strategy adopted by BG99. For comparison purposes the pseudo-

spectral technique was also implemented and Fig. 1 shows that there is acceptable agreement between the two approaches. We
should note that the turnover time of the Gaussian vortex (6) isT = 16π2 ≈ 158, based on its angular velocity at the centre,
and increases outwards with, for exampleT = 16π2(1 − e−1)−1 � 250 at a radiusr = 2. Thus the run in Fig. 1 up tot = 800
represents roughly five turnover times.

Figure 1 illustrates the presence of the rebound effect – it appears that the initial transfer of enstrophy from mean to azimuthal
components takeseazi

ω up to about 1600 but about half of this is subsequently lost through the reverse exchange back to the
mean. This value,emean

ω , was also computed using both the Keller-box and the pseudo-spectral methodologies although it is
important to emphasise that throughout this paper the latter technique uncovered thetotal axisymmetric enstrophy, that isnot
just the O(ε2) part emean

ω (11). The pseudo-spectral code also enabled us to calculate the total perturbation enstrophy, which
should be identically zero for all times. Figure 1 demonstrates that the weakly nonlinear approximation is clearly quite accurate
at this relatively low level of strain and that our code is well behaved for times up to aboutt = 600. After this the total enstrophy
shows signs of no longer being conserved according to the pseudo-spectral routine – monitoring of the perturbation vorticity
field indicates that this break down is due to the first filament of vorticity reaching the boundary of the computational region.

Further evidence as to the relative performances of the two methods is given in Fig. 2 which depicts the radial distributions
of the fundamental e2iθ modeω1 and mean flow correctionω2 (see (5)) at two selected times. The structures were determined
from the pseudo-spectral results by interpolating the vorticity from the Cartesian grid onto a radial grid and then taking
discrete Fourier transforms to recover the individual azimuthal modes. There are relatively minor differences between the
two calculations but the gross features are consistent. This suggests that at this low level of strain the weakly nonlinear analysis
captures the essential physics of the dynamics. Equivalently, the additional modes included in the pseudo-spectral code are so
small as to be, at most, of only very marginal importance.

Fig. 1. Results for the evolution of enstrophy using the external strain (12) withε = 5×10−4. The forms ofeazi
ω andemean

ω (see (11)) according
to the weakly nonlinear approach of BG99 are shown with solid lines while the corresponding pseudo-spectral results are indicated dashed. The
total perturbation enstrophy for the pseudo-spectral model (which should be zero) is denoted by the bold line distinguished with the bullets.
Last, the full non-axisymmetric perturbation enstrophy from the pseudo-spectral method (that is includingall the non-axisymmetric modes and
not just the weakly nonlinear contributions) is designated by the dot–dash curve.
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Fig. 2. (a) The radial structure of the e2iθ modeω1 (first two frames) and the mean correctionω2 (last frame) forε = 5 × 10−4 and time
t = 160. The solid lines denote the results using the Keller-box routine on the weakly nonlinear system (7) while the pseudo-spectral results are
given by the dashed curves. (b) As (a) except for timet = 384.

We remark on the oscillations in the radial structure which increase in frequency as time advances corresponding to the
fine-grained structures identified by BG99. These radial oscillations correspond to spiral perturbations in the vorticity once
the angular dependence is accounted for, and will be destroyed on an O(Re1/3) shear–diffuse timescale [5]. At this time the
non-axisymmetric componentω1 will relax to a steady solution of (7b), which is an inviscid perturbation to a Gaussian vortex,
forced by strain. These solutions have been analysed by Jiménez et al. [29] and a comparison between these steady states and
our weakly nonlinear simulations is given in Fig. 6 of [20]. Indeed at the moderate timet = 384 shown in Fig. 2(b) the solution
for the real part ofω1 is already close to the solution in [29]. Note that the theory of [29] applies toany initial vortex and gives
its structure at long times of O(Re), with a Gaussian axisymmetric component; the theory applies to our configuration at rather
earlier times simply because we chose to start with a Gaussian initial condition.

It turns out that the rebound phenomenon is closely related to the damping of quasi-modes on the Gaussian vortex. The study
of [14] predicted a decay rate of quasi-modes of 0.079/4π � 0.0063 in our units, while simulations performed in [8] identified
three important time regimes during the evolution of the vortex. The first of these regimes, corresponding to relatively early
times in the rebound process (see [8], Fig. 1, regime A), consists of a decay which matches the damping rate obtained in [14].

3.2. Steady strain: moderate ε

The results described thus far give us confidence that the weakly nonlinear system is an accurate approximation for the
full forms at least for small strains. This is of no surprise of course, but our next concern is how the situation changes as
the amplitudeε is increased. Figure 3 summarizes the important features of the development for the two valuesε = 0.001
(εr � 0.0503) andε = 0.002 (εr � 0.101). (In both cases the results are shown for times prior to the first filament of vorticity
reaching the boundary.) Let us take the smallerε first – see Fig. 3(a). The situation here is remarkably similar to that shown
in Fig. 1. There is good agreement between the weakly nonlinear and pseudo-spectral predictions but already we can see the
reduction in the rebound phenomenon compared with Fig. 1. Note that BG99 showed that for other forms of input strain the
rebound can be somewhat greater – indeed for an impulsive external strain the rebound is about three-quarters of the peak
values. However, it should be remarked that a situation for whichq(t)= 0 (see (4)) in the final state is somewhat different in
character to one for whichq(t) �= 0 eventually. In the former case simulations indicate that axisymmetrization takes place (for
small enoughε, here up to 0.001) while in the latter situation relaxation to a non-axisymmetric strained state occurs.

By the pointε = 0.002, see Fig. 3(b), some significant changes have taken place. The strength of the rebound is noticeably
reduced and, importantly, weakly nonlinear theory no longer provides an accurate description of the full problem. Two features
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(a) (b)

Fig. 3. As Fig. 1 except the strain field is now enhanced. (a)ε = 0.001, (b)ε = 0.002.

Fig. 4. Pseudo-spectral results for the evolution of enstrophy using the external strain (12) withε = 0.0012–0.0018 in steps of 0.0002.

alert us to this: first the weakly nonlinear and pseudo-spectral results exhibit large differences beyond timet ≈ 100 and, second,
the dot-dashed line shows that a high proportion of the total non-axisymmetric perturbation enstrophy is contained in the
higher azimuthal wavenumber modes. Weakly nonlinear theory is obviously incapable of capturing this behaviour and has
comprehensively broken down.

In Fig. 4 we provide information on the evolution of the flow behaviour asε changes from 0.001 to 0.002. It is apparent how
the strength of the rebound behaviour diminishes withε and that the minimum value ofemean

ω is delayed to later and later times.
Notice also that the proportion of azimuthal enstrophy contained in the higher harmonics grows withε, which confirms our
earlier comment that for strainsε much beyond 0.001 weakly nonlinear theory is untenable. We reiterate that although at first
sightε = 0.002 appears a disappointingly small value for weakly nonlinear theory to break down,ε ≈ 0.003 would be sufficient
for the strain to virtually destroy a Kida vortex. Moreover, Legras et al. [28] have shown recently that the strain needed to tear
apart a distributed vortex is about three-quarters of that required to destroy a vortex patch. Thusε = 0.002 does not represent
particularly small values of strain in these terms. In addition, in experiments relating to response to a step input, BG99 pointed
out that the weakly nonlinear formulation is only guaranteed to be good for times satisfyingεt 	 1. Given the long turnover
time of our basic vortex state it is essential that we integrate for several hundred time units to uncover the full evolution of the
perturbation quantities and therefore it is unsurprising that there is an apparently tight restriction onε before weakly nonlinear
theory breaks down. Indeed the results in Figs. 3 and 4 only show significant deviations between the two computation methods
whenεt exceeds about 0.2 in accordance with the remarks in BG99.

Next we examine the detailed radial structure of the first two azimuthal modes. Figure 5 illustrates the forms ofω1 andω2 for
strain amplitudeε = 0.001 at the three timest = 64, 192 and 384. There are systematic deviations between the weakly nonlinear
and pseudo-spectral results – deviations which increase with time in line with our earlier comment that weakly nonlinear results
are likely to become of ever decreasing usefulness as time advances. At the earliest time there is little difference between the
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(a)

(b)

(c)

Fig. 5. Radial structure ofω1 andω2 for external strain magnitudeε = 0.001. The solid lines denote the results using the Keller-box routine on
the weakly nonlinear system while the pseudo-spectral results are given by the dashed curves. (a)t = 64, (b)t = 192 and (c)t = 384.

Fig. 6. As Fig. 5 except thatε = 0.002 and only timet = 160 is shown.

two forms of solution but as time passes so the picture changes. Byt = 384, although there is some similarity in the structures
of ω1, the mean flow correctionsω2 predicted by the Keller-box and pseudo-spectral methods bear virtually no resemblance.
The pseudo-spectral forms of these quantities appear to be both strongly suppressed in magnitude and to have lost some of the
rapid oscillations predicted by BG99. These trends continue to be evident in Fig. 6, which is concerned with the caseε = 0.002.
By this stage there appears to be little evidence of radial oscillatory behaviour in the pseudo-spectral results.

Scrutiny of Fig. 3(a) shows that by timet = 400 there are signs of hyperviscous dissipation as indicated by the departure
of the total perturbation enstrophy from zero. It is possible that the loss of radial structure in the pseudo-spectral findings of
Figs. 5 and 6 at large amplitude strains could be due to this same numerical dissipation. In order to ascertain whether this is the
case, we sought further information concerning the fully nonlinear modes using the CASL [27] code withε = 0.002. The final
output is generated on a 512 square grid although the accuracy with which the vorticity contours are advected corresponds to
a much higher resolution calculation. It was found that the radial structure of the azimuthal modes was essentially identical to
that computed by the pseudo-spectral code while the total perturbation enstrophy was better conserved due partly to the very
different numerical dissipation involved as introduced by the contour surgery technique (cf. the CASL results shown in Fig. 7
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Fig. 7. As Fig. 1 except that the strain field amplitudeε = 0.002 and the dashed and dot-dash curves are computed using the CASL method.

Fig. 8. Contours of the first azimuthal mode Re(ω1e2iθ ) at time t = 160. In (a) is shown the structure according to weakly nonlinear theory
while (b)–(d) give the pseudo-spectral results forε = 5×10−4, 0.001 and 0.002, respectively. In each case there are ten equally spaced contour
intervals from zero to the maximum perturbation value (shown with solid lines) with a similar representation from zero to the most negative
value (shown dashed).
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Fig. 9. As Fig. 8 except results are now for the second azimuthal mode Re(ω22e4iθ ).

with their pseudo-spectral counterparts illustrated in Fig. 3(b)). This gives confidence that our fully nonlinear predictions are
reliable.

Now we turn to consider the spatial distribution of the perturbation vorticity. Figures 8 and 9 illustrate the forms of
Re(ω1e2iθ ) and Re(ω22e4iθ ) for a selection of strain magnitudes and the timet = 160. In other words, these plots show
the actual vorticity distributions corresponding to the first two modes. Figure 8(a) indicates the weakly nonlinear predictions
arising from BG99 while (b)–(d) demonstrate the changes that are induced as the external strain is gradually increased. It is
evident that the fundamental azimuthal mode stays localized and that there is a tendency for the weak spiralling feature to be
lost with enhanced strain. The corresponding results for the second mode, see Fig. 9, shows this effect with much more clarity.
The well-defined spirals present in the weakε= 5× 10−4 case are virtually completely extinguished onceε= 0.002 and there
is a tendency for this mode to spread from the centre of the vortex. We also see the explanation of the results presented in Fig. 6
which suggested that high frequency radial structure is lost asε grows – this is a consequence of the damping of the spiral form
which exists in the linearized and weakly nonlinear versions of the problem. Indeed, under the auspices of weakly nonlinear
theory, at later times the spirals become ever more tightly wound as the spatial oscillations in radius increase in frequency.
However, once the strain field becomes significant this behaviour disappears.

3.3. Unsteady strain

Last, we consider briefly the fate of the vortex should the constant external straining field be shut off at some time. To do
this we conducted an experiment with the largest strain used,ε = 0.002, in which the straining was removed att = 200, some
time before any filaments reach the boundary of our computational domain. The weakly nonlinear predictions are compared
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Fig. 10. The perturbation enstrophy as a function of time as in Fig. 7 except that the external strain is switched off at timet = 200.

Fig. 11. Radial structure ofω1 andω2 at time t = 384 for an external strain of magnitudeε = 0.002 which is removed at timet = 200. The
solid lines denote the results using the Keller-box routine on the weakly nonlinear system while the CASL results are shown by the dashed
curves.

with the results of a CASL calculation in Fig. 10. The integrated perturbation enstrophy for the first mode,eazi
ω , shows quite

good agreement with the weakly nonlinear theory although the latter tends to over-estimate the decay of the mode. Of course
there are wide discrepancies in the forms ofemean

ω for times much later thant = 100 (a point made with reference to Fig. 3(b)
previously) and the CASL code confirms that the higher modes contain very significant proportions of the total azimuthal
perturbation enstrophy. In fact, the relatively good agreement in the forms ofeazi

ω appears to be to some extent fortuitous; this
is reflected by the results of Fig. 11 which shows the comparisons of the radial structures of the modes at timet = 384. This
is long after the external straining has been removed and it is obvious that there is a significant memory effect at work here
with the enhanced oscillations still present in the weakly nonlinear results. Another view of the development of the vorticity
is provided in Fig. 12 which shows a time-sequence for the non-axisymmetric component of the perturbation enstrophy (if the
full perturbation enstrophy were plotted then an extra Gaussian blob of negative vorticity would have to be superposed). At
early times we see how the imposed strain leads to the formation of a filament of vorticity which is indicative of the onset of
vortex stripping: after the strain is switched off at timet = 200 the natural rotation of the vortex leads to the winding-up of
this filament. It should be emphasised that this behaviour is somewhat different from the ideas of vortex axisymmetrization
and the creation of fine radial structure. In this event the whole vortex essentially becomes axisymmetric while in the wind-up
illustrated in Fig. 12 although the filament structure certainly does tend to axisymmetry, the central portion of the vortex retains
its distinctiven= 2 type form reminiscent of the tripole structures obtained by Rossi et al. [12].

It is of interest to know whether the final non-axisymmetric state occurs irrespective of the size of the applied strain. To
provide some insight into this aspect we explored the evolution of the vortex when subjected to various strengths of strain all
shut off at timet = 200. Our results are summarised in Fig. 13 which illustrates the form of the quantity|Q(t)| where

Q=mxx −myy − 2imxy and {mxx,mxy,myy} =
∫ ∫ {

x2ω(r, θ, t), xyω(r, θ, t), y2ω(r, θ, t)
}

dx dy,

where the integral is taken over the 16π -square domain andω is now the perturbation vorticity divided byε. The function
Q(t) was introduced by Rossi et al. [12] and it is known that in the far-fieldψ ∝Q(t)r−n (see [8]). The upshot is that if the
perturbation vorticity is to become axisymmetric ast → ∞ thenQ(t)→ 0 in this limit. It is clear from Fig. 13 that this indeed
occurs for the weakly nonlinear calculations given by BG99. However, the finite amplitude extension counterpart converges non-
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Fig. 12. Evolution of the non-axisymmetric component of perturbation enstrophy when the vortex is subjected to a strain field withε = 0.002
that is switched off att = 200. The panels show the development through timest = 80, 160, 240, . . . .

Fig. 13. Evolution of|Q(t)| when the vortex is subject to a strain field that is switched off att = 200, where the magnitude of the strainε has
the values 0.0002, 0.0005 and 0.001. Comparison is made with the weakly nonlinear results of BG99 (thick solid curve).

uniformly in that at larget the corresponding|Q(t)| oscillates within a slowly decaying envelope. Unsurprisingly the magnitude
of the oscillation decreases asε is reduced but there is no evidence of a critical strain level above which axisymmetrization
completely disappears, but rather a continuous increase in the magnitude of oscillation of|Q(t)| (and accordingly the level
of non-axisymmetry) at any given time asε is increased. These conclusions must be taken to be somewhat tentative as much
longer integration times are really necessary to determine whetherQ(t) properly vanishes ast → ∞ rather than just saturating
at some low level.

The angular velocity itself can also be estimated from the second order moments, using the algorithm described by Rossi
et al. [12]. There are significant fluctuations in these measurements (in phase with the oscillations seen in|Q(t)| in Fig. 13). For
ε = 5× 10−4 we find that the maximum angular velocity is about 0.008, which is in general agreement with both the numerical
results of Rossi et al. [12] for different initial conditions, and with the theoretical study of Le Dizès [18]. Asε is increased the
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level of fluctuations increases which makes the maximum angular velocity more difficult to measure, but the overall trend is
that the angular velocity falls as the strain is enhanced.

4. Discussion

We have used numerical methods to investigate the processes of axisymmetrization and spiral wind-up which occur when
a strong straining field is applied to a planar vortex. It is of importance to appreciate how the various computational approaches
complement and contrast each other. In some cases two methods gave virtually identical results while in others there were
significant differences. Although this might at first seem troublesome, in fact the divergence merely gives an indication as to
when the borders of the various parameter ranges of validity are being breached. For example, the comparison of the Keller-box
results and the pseudo-spectral findings illustrate that weakly nonlinear theory is useful at relatively low strain rates, but a point
comes beyond which it ceases to have any validity. It is at this stage that the observed phenomena become truly fully nonlinear
in character and reliable results can only be obtained under a completely nonlinear study. These cases were investigated by the
pseudo-spectral and CASL codes and the fact that good agreement could be obtained despite the very different ways in which
dissipation is treated lends further credence to our results.

In this study we have concentrated on the problem for which the external strain field is imposed impulsively. In many
applications it might be expected that the strain builds up more slowly and to assess this aspect we repeated some of our
calculations with a time-dependent strain field. Specifically, we choseε = ε(t) = ε0 tanh(αt/20) with ε0 andα prescribed
constants and the corresponding evolution of enstrophy is summarized in Fig. 14. In this figureα takes a range of values
from 0.1 (which corresponds to the case that about 96% of the maximum strain is achieved by timet ≈ 200) through to the
instantaneous switch-on case(α → ∞). We observe that the rebound phenomenon is quite robust so long as the maximum
strain imposed is reached at or near the time at which the peak ineazi

ω (Eq. (11)) is seen in the instantaneous problem. As an
example, forα = 0.2 we see that the rebound is still very evident although it is significantly damped. It appears that the rebound
phenomenon can be effectively suppressed by allowing a sufficiently slow build-up of the straining field.

Of course, the primary interest for this study is to describe the way the picture painted by BG99 for the weakly nonlinear
problem is modified as the intensity of the strain is increased. It should be emphasised that our calculations have confirmed
the conclusions reached by BG99 that for weak strain there is a significant rebound phenomenon at work, the perturbation
enstrophy develops a distinctive high-wavenumber structure whose spatial frequency grows with time and meanwhile the vortex
relaxes to a steady strained state. As the strain is increased these major characteristics become much less marked – while the
rebound behaviour is moderately robust it does eventually all but disappear at significant strain rates. In concert, the rapid radial
oscillations are virtually extinguished although if the forcing is switched off there is some tendency for the radial structure to
return. Our study forms a foundation for consideration of more intricate cases such as the extension to relaxing strained vortices
within high Reynolds number shear flows [29].

The different behaviours obtained above for weak and strong strain have analogies with recent studies of perturbed vortices
for which the results also depend on the strength of the strain. In the case of weak forcing smooth vortices tend to axisymmetrize
after the strain is switched off; however, for stronger strains the vortex can bifurcate to a non-axisymmetric, steadily rotating
state [9–12] and the process of spiral wind-up is arrested. In our calculation summarised by Fig. 12 vorticity was stripped from

Fig. 14. Evolution of the mean and total azimuthal components of enstrophy for the time-dependent straining fieldε = ε0 tanh(αt/20) for a
selection of values ofα. Hereε0 = 0.0015 and the impulsive case corresponds to the limitα→ ∞.
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the periphery of the vortex leaving a rotating distorted core; this core winds up the stripped vorticity, but shows no tendency
to relax to axisymmetry itself. This is in agreement with simulations which indicate that the sharp-edged vortices that result
from stripping (and which are argued to be common in 2-d turbulence) are able to resist the processes of axisymmetrization that
frequently are important for smoother vortices.
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